In my previous post (here), I wrote about obtaining a confidence interval for the estimate of an interaction contrast. I demonstrated, for a simple two-way independent factorial design, how to obtain a confidence interval by making use of the information in an ANOVA source table and estimates of the marginal means and how a custom contrast estimate can be obtained with SPSS.
One of the results of the analysis in the previous post was that the 95% confidence interval for the interaction was very wide. The estimate was .77, 95% CI [0.04, 1.49]. Suppose that it is theoretically or practically important to know the value of the contrast to a more precise degree. (I.e. some researchers will be content that the CI allows for a directional qualitative interpretation: there seems to exist a positive interaction effect, but others, more interested in the quantitative questions may not be so easily satisfied). Let's see how we can plan the research to obtain a more precise estimate. In other words, let's plan for precision.
Of course, there are several ways in which the precision of the estimate can be increased. For instance, by using measurement procedures that are designed to obtain reliable data, we could change the experimental design, for example switching to a repeated measures (crossed) design, and/or increase the number of observations. An example of the latter would be to increase the number of participants and/or the number of observations per participant. We will only consider the option of increasing the number of participants, and keep the independent factorial design, although in reality we would of course also strive for a measurement instrument that generally gives us highly reliable data. (By the way, it is possible to use my Precision application to investigate the effects of changing the experimental design on the expected precision of contrast estimates in studies with 1 fixed factor and 2 random factors).
The plan for the rest of this post is as follows. We will focus on getting a short confidence interval for our interaction estimate, and we will do that by considering the half-width of the interval, the Margin of Error (MOE). First we will try to find a sample size that gives us an expected MOE (in repeated replication of the experiment with new random samples) no more than a target MOE. Second, we will try to find a sample size that gives a MOE smaller than or equal to our target MOE in a specifiable percentage (say, 80% or 90%) of replication experiments. The latter approach is called planning with assurance.
Pagina's
Tuesday, 25 July 2017
Wednesday, 19 July 2017
Planning for Precision: A confidence interval for the contrast estimate
In a previous post, which can be found here, I described how the relative error variance of a treatment mean can be obtained by combining variance components. I concluded that post by mentioning how this relative error variance for the treatment mean can be used to obtain the variance of a contrast estimate. In this post, I will discuss a little more how this latter variance can be used to obtain a confidence interval for the contrast estimate, but we take a few steps back and consider a relatively simple study.
The plan of this post is as follows. We will have a look at the analysis of a factorial design and focus on estimating an interaction effect. We will consider both the NHST approach and an estimation approach. We will use both 'hand calculations' and SPSS.
An important didactic aspect of this post is to show the connection between the ANOVA source table and estimates of the standard error of a contrast estimate. Understanding that connections helps in understanding one of my planned posts on how obtaining these estimates work in the case of mixed model ANOVA. See the final section of this post.
The plan of this post is as follows. We will have a look at the analysis of a factorial design and focus on estimating an interaction effect. We will consider both the NHST approach and an estimation approach. We will use both 'hand calculations' and SPSS.
An important didactic aspect of this post is to show the connection between the ANOVA source table and estimates of the standard error of a contrast estimate. Understanding that connections helps in understanding one of my planned posts on how obtaining these estimates work in the case of mixed model ANOVA. See the final section of this post.
Tuesday, 11 July 2017
The new statistics: a five-day course
Last week, I taught a 5-day-course for the LOT (Landelijke Onderzoeksschool Taalwetenschap; Netherlands National Graduate School of Linguistics; www.lotschool.nl) introducing the new statistics to PhD-students working in linguistics and related fields of research. Links to the course materials can be found in this post (apologies for the many typos).
The day-to-day program was as follows.
The day-to-day program was as follows.
- Important concepts underlying statistics, like population paremeters, sampling, sanpling distribution, standard error and the margin of error. The primary means of developing these concepts was working with ESCI (www.tiny.cc/itns). The lab assignments are primarily based on Cumming and Calin-Jageman's (2017) "Introduction to the new statistics". The lab-assignments can be found here: www.tiny.cc/newstats. A pdf-version of the presentation can be found here: http://tiny.cc/newstats-presentation
- Continuation of day 1. For students that finished the first assignment and to accommodate differences in backgrounds, new lab assignments focusing on statistical assumptions underlying the crucial concepts. Some of these assignments are based on Cumming and Calin-Jageman (2017) and ESCI, others work with R. The lab-assignments can be found here: www.tiny.cc/newstatsla2
- Lecture only. In the lecture we reviewed the basic concepts discovered in the first two days. The concept of a confidence interval was introduced and the p-value. Furthermore, we discussed NHST by considering (at a procedural level and not so much on a statistical/philosophical level) how the procedure relates to its foundations: Fisher's significance testing and Neyman and Pearson Hypothesis Testing. We basically saw that NHST is inconsistent with both of these foundations. We also discussed misinterpretations of p-values. The presentation can be found here: www.tiny.cc/newstatsday3. I also made available the lecture notes: www.tiny.cc/newstatsday3ln.
- Lecture only. This day was about effect sizes. We considered the unstandardized difference between means, Cohen's d, and the case level effect size measures Cohen's U3 and the Common Language Effectsize. The powerpoint presentation is at www.tiny.cc/newstatsday4.
- On the last day the students worked on new lab assignments focusing on interpretations of significance, the use of p-values and effect sizes in published work and working with effect size measures based on SPSS ANOVA output. These assignments can be found here: www.tiny.cc/newstatsday5.
Subscribe to:
Posts (Atom)